Grazer Physikerin entwickelt elektronische Haut

Die von Anna Maria Coclite entwickelte „Smartskin“ kommt menschlicher Haut sehr nahe: Sie nimmt Druck, Feuchtigkeit und Temperatur simultan wahr und produziert elektronische Signale. Sensiblere Roboter oder intelligentere Prothesen sind so denkbar.

Die Haut ist das größte Sinnesorgan und zugleich der Schutzmantel des Menschen. Sie „erfühlt“ mehrere Sinneseindrücke gleichzeitig und meldet Informationen zu Feuchtigkeit, Temperatur und Druck an das Gehirn. Für Anna Maria Coclite ist ein Material mit solchen multisensorischen Eigenschaften „eine Art ‚heiliger Gral‘ in der Technologie intelligenter künstlicher Materialien. Insbesondere die Robotik und intelligente Prothetik würden von einer besser integrierten, präzisieren Sensorik ähnlich der menschlichen Haut profitieren.“

Der ERC-Grant-Trägerin und Forscherin am Institut für Festkörperphysik der TU Graz ist es mittels neuartigem Verfahren gelungen, das Drei-in-Eins-Hybridmaterial „Smartskin“ für die nächste Generation von künstlicher, elektronischer Haut zu entwickeln. Das Ergebnis dieser Pionierforschung wurde nun im Fachjournal Advanced Materials Technologies veröffentlicht.

Feinfühlig wie Fingerspitzen

Knapp sechs Jahre lang arbeitete das Team im Rahmen von Coclites ERC-Projekt „SmartCore“ an der Entwicklung von Smartskin. Mit 2.000 einzelnen Sensoren pro Quadratmillimeter ist das Hybridmaterial feinfühliger als menschliche Fingerspitzen. Jeder dieser Sensoren besteht aus einer einmaligen Materialkombination: einem intelligenten Polymer in Form eines Hydrogels im Inneren und aus einer Schale aus piezoelektrischem Zinkoxid. Coclite erklärt: „Das Hydrogel kann Wasser absorbieren und dehnt sich dadurch bei Feuchtigkeits- und Temperaturänderungen aus. Dabei übt es einen Druck auf das piezoelektrische Zinkoxid aus, das auf diese und auf alle anderen mechanischen Belastungen mit einem elektrischen Signal reagiert.“

Das Ergebnis ist ein hauchdünnes Material, das mit extrem hoher räumlicher Auflösung simultan auf Krafteinwirkung, Feuchtigkeit und Temperatur reagiert und entsprechende elektronische Signale abgibt.

Mehrere Anwendungsfelder

Die einzelnen Sensorschichten sind also sehr dünn und gleichzeitig flächendeckend mit Sensorelementen ausgestattet. Dem hautähnlichen Hybridmaterial eröffnen sich nun mehrere Anwendungsfelder: Im Gesundheitswesen beispielsweise könnte das Sensormaterial selbstständig Mikroorganismen erkennen und entsprechend melden. Denkbar sind auch Prothesen, die dem Träger Auskunft über Temperatur oder Feuchtigkeit geben, oder Roboter, die ihre Umwelt sensibler wahrnehmen können.

Die Eigenschaften der Smartskin werden nun noch weiter optimiert: Anna Maria Coclite und ihr Team – hier insbesondere der Dissertant Taher Abu Ali – wollen den Temperaturbereich, auf den das Material reagiert, erweitern und die Flexibilität der künstlichen Haut verbessern.

Kommentare und Antworten

×

Name ist erforderlich!

Geben Sie einen gültigen Namen ein

Gültige E-Mail ist erforderlich!

Gib eine gültige E-Mail Adresse ein

Kommentar ist erforderlich!

* Diese Felder sind erforderlich.

Sei der erste der kommentiert